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Word2Vec

Distributional Hypothesis:

A ME LTI, MEAE)E X BRI

A

Harry Potter is written by JK. Rowling

Figure: 189 LT~ 3C
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Je suis étudiant </s>

attention

vector
context
vector

attention .
weights .

| am a student <s> Je suis étudiant
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Mult-Heads

Multi-Heads #it %1 z:

HEZA z:

2) Multiply with a weight
matrix that was trained
jointly with the model

SRR x

1) Concatenate all the attention heads

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

-
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ELMo

Hey ELMo, what's the embedding
of the word “stick"?

There are multiple possible
embeddings! Use it in a sentence.

Oh, okay. Here:
“Let's stick to improvisation in this
skit”

Oh in that case, the embedding is:
-0.02,-0.16, 0.12,-0.1....etc

43/69
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OpenAl GPT

/£ 4. Fine-Tuning?

Classification ‘ Start | Text ‘Emmﬂ*{'l‘ransronner
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@
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Similarity ‘ | : ‘ ‘ | |

‘Sun| Text2 ‘De\im‘ Text1 |Extm:t|}t{ |

12

‘ Start | Context ‘ Deiin ‘ Answer 1 |Exmt|HTmnsinmer
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BERT

OpenAl GPT BY|o]%

e EA[E] The animal didn't cross the because it was too tired.
e Pretraining(1) #A Fine-Tuning(2) ANPTHL

fRR T %
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* NSP Multi-task Learning
* Encoder again
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o MIANTPER
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Input [cLs] my || dog is cute || [SEP] he || likes || play || ##ing || [SEP]

Token
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+ + + + + + + + + + +

Segment

oo | B [ B | LB (B [E [ E ][ B | [ | (B ] [ B | [ B0 ]
+ -+ -+ + -+ + + + -+ -+ +

Position

oo | Eo || B || B [ & ][ B ][ & |l ][ & [ & [ & |[ 0]
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Masked LM

RIATFEMET

BE#L Mask #% 15% K9iA), it BERT RN
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Transformer
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A TR &

SINFESARR Pretraining #1 Fine-Tuning A~ ITHL

Predict likelihood

1% | IsNext
that sentence B
belongs after
99%  NotNext
sentence A
2 3 4 M 51zT

BERT

pocnes T T 11111~

[cls) the man [MASKI to  the store [SEP]

Input

[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flightless birds [SEP]

Sentence A Sentence B
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Fine-Tuning
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Fine-Tuning
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Sentence 1 Sentence 2
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Fine-Tuning
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Pretrained Models

1A E# | 28t | head B | 2B
BERT-base-uncased 12 768 12| 110M
BERT-base-cased 12 768 12| 110M
BERT-large-uncased 24 1024 16 | 340M
BERT-large-cased 24 1024 16 | 340M
BERT-large-ml-cased 12 768 12| 110M
BERT-base-chinese 12 768 12| 110M
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Fine-Tuning

python run_classifier.py \
--task_name=MRPC \
--do_train=true \
--do_eval=true \
--data_dir=$GLUE_DIR/MRPC \
--vocab_file=$BERT_BASE DIR/vocab.txt \
—--bert_config_file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
--max_seq_length=128 \
--train_batch_size=8 \
--learning_rate=2e-5 \
—--num_train_epochs=3.0 \
--output_dir=/tmp/mrpc_output/
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Pretraining

HARTALTE :

python create_pretraining data.py \
—-input_file=./sample_text.txt \
—--output_file=/tmp/tf_examples.tfrecord \
--vocab_file=$BERT_BASE_DIR/vocab.txt \
--do_lower_case=True \
--max_seq_length=128 \
--max_predictions_per_seq=20 \
--masked_lm_prob=0.15 \
--random_seed=12345 \
—-—-dupe_factor=>5
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Pretraining

python run_pretraining.py \
--input_file=/tmp/tf_examples.tfrecord \
—-output_dir=/tmp/pretraining_output \
--do_train=True \
--do_eval=True \
—-bert_config_file=$BERT_BASE_DIR/bert_config.json \
—--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
--train_batch_size=32 \
--max_seq_length=128 \
--max_predictions_per_seq=20 \
—--num_train_steps=20 \
--num_warmup_steps=10 \
--learning_rate=2e-5
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