本文是在slurm管理的集群里通过sbatch提交任务进行Pytorch DDP训练的例子。我们这里只用cpu。
目录
训练代码
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
import os
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from socket import gethostname
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def train(args, model, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break
def test(model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def setup(rank, world_size):
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
args = parser.parse_args()
use_cuda = False
torch.manual_seed(args.seed)
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
dataset1 = datasets.MNIST('data',
train=True,
download=False,
transform=transform)
dataset2 = datasets.MNIST('data',
train=False,
download=False,
transform=transform)
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["SLURM_PROCID"])
print(f"Hello from rank {rank} of {world_size} on {gethostname()}" \
, flush=True)
setup(rank, world_size)
if rank == 0: print(f"Group initialized? {dist.is_initialized()}", flush=True)
print(f"host: {gethostname()}, rank: {rank}")
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset1,
num_replicas=world_size,
rank=rank)
train_loader = torch.utils.data.DataLoader(dataset1,
batch_size=args.batch_size,
sampler=train_sampler,
pin_memory=True)
test_loader = torch.utils.data.DataLoader(dataset2,
**test_kwargs)
model = Net()
ddp_model = DDP(model)
optimizer = optim.Adadelta(ddp_model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
for epoch in range(1, args.epochs + 1):
train(args, ddp_model, train_loader, optimizer, epoch)
if rank == 0: test(ddp_model, test_loader)
scheduler.step()
if args.save_model and rank == 0:
torch.save(model.state_dict(), "mnist_cnn.pt")
dist.destroy_process_group()
if __name__ == '__main__':
main()
这是一个非常简单的ddp训练代码,如果要在slurm集群上运行,有这么几点:
- word_size需要通过环境变量WORLD_SIZE读取,后面slurm脚本会介绍怎么计算
- rank由slurm的环境变量SLURM_PROCID提供
slurm脚本
#!/bin/bash
#SBATCH --job-name=ddp-torch # create a short name for your job
#SBATCH -p debug
#SBATCH --nodes=2 # node count
#SBATCH --ntasks-per-node=1 # total number of tasks per node
#SBATCH --cpus-per-task=32 # cpu-cores per task (>1 if multi-threaded tasks)
#SBATCH --mem=32G # total memory per node (4 GB per cpu-core is default)
#SBATCH --time=1:00:00 # total run time limit (HH:MM:SS)
#SBATCH -o logs/out%j.log
#SBATCH -e logs/err%j.log
export MASTER_PORT=29500
export WORLD_SIZE=$(($SLURM_NNODES * $SLURM_NTASKS_PER_NODE))
echo "WORLD_SIZE="$WORLD_SIZE
master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr
echo "MASTER_ADDR="$MASTER_ADDR
module purge
source /public/home/lili/.bashrc
conda activate torch22cpu
srun python mnist_classify_ddp.py --epochs=2
- 使用debug分区
- 申请两个节点
- 每个节点起一个任务/进程(我们这里是cpu,所以设置为1就可以了,如果是gpu那么通常每个卡起一个进程)
- 每个进程申请32核(blas会充分利用多核)
- 每个节点内存32G
- 运行最长时间为1个小时
- 标准输出和错误输出保存到logs目录下,%j的意思是任务id,这样避免多次运行覆盖
- 使用29500作为master的端口
- WORLD_SIZE是节点总数(SLURM_NNODES)乘以每个节点上的任务数(SLURM_NTASKS_PER_NODE)
- MASTER_ADDR是SLURM_JOB_NODELIST里的第一个节点
我们发现在slurm里运行ddp程序最大的特点就是我们不能提前知道程序会跑到哪些机器上,因此需要用SLURM_相关的环境变量(这些环境变量在我们用sbatch提交任务后被自动设置好)。由于WORLD_SIZE由SLURM_NNODES和SLURM_NTASKS_PER_NODE动态计算得到,如果我们想增加节点,我们只需要修改”SBATCH –nodes=xxx”就可以了。
注意:只有srun的命令会在每个节点上运行,其它命令(比如module purge)只会在提交任务的节点上运行。这些命令通常用于设置环境变量或者初始化环境(mpi通常用module或者python用conda activate或者source),其它计算节点会继承这些环境变量。
提交任务
sbatch ddp.job
- 显示Disqus评论(需要科学上网)